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Week 6: Aerodynamics III

m Speed of Sound

s Subsonic Wind Tunnels
m Airspeed Measurement
s Why Mach > 0.37
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Speed of Sound

Ernst Mach and his number



Speed of Sound

= Sound, a mechanical wave, travels through
its media with a certain speed

m It can be shown that this speed is:

a = ,/YRT




Speed of Sound

m Note that:

m For a perfect gas, the speed of sound depends
only on temperature

m Speed of sound is a property at a point, and
therefore changes along a fluid flow

a =,/ YRT




Mach Number

s From the speed of sound, we can define the
Mach Number:

v
M = —
a

s Note once again that the Mach number is a
point property: the ratio between the
velocity and speed of sound at a point



Mach Number

m This is an incredibly important number in
aerodynamics. It defines 3 flow regimes:
m M < 1:Subsonic
m M=1:Sonic
m M > 1: Supersonic

m The flow is also said to be transonic when
0.8 <M < 1.2 and hypersonic when M > 5



Subsonic Wind Tunnels
The way we test aerodynamics



Wind Tunnels

s Wind tunnels are devices that allow us to
control the velocity over a section (called
the test section) in order to conduct
experiments on aerodynamics over bodies,
wings, airfoils, etc.

m There are generally 3 parts to a wind
tunnel: a nozzle, test section, and diffuser



Subsonic Wind Tunnels
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Subsonic Wind Tunnels

s From continuity and assuming

incompressible flow:
Ay A3
Vo, =—V, =—V
2=, 1T,

m But Bernoulli’s:

1 1 1
p1+opVE =pa+5pVs =ps +5pV3



Subsonic Wind Tunnels

= In most tunnels, p, is “vented” to
atmospheric pressure to allow easy access
into and out of the tunnel

m Also, the ratio 2% = 1 such that V; = Vs

A1
= In these tunnels, the operation is governed

by the pressure difference p, — p; and ™
1



Subsonic Wind Tunnels

m From Bernoulli’s:
2
Vs = ; (p1 — p2) + V{

= ButV; =22V,
1

V2 =2 (py - )'<2>2
2 pP1 pP2) 1




Subsonic Wind Tunnels

m Solving for V, yields:

2(p1 — p2)
JPLL - (Az/A1)?]

s Where the tunnel’s “control knob” adjusts

V2=

P1— D2 and 1s set by the designer



Airspeed Measurement
Airspeed is life



Airspeed

m Airspeed is the relative velocity of air with
respect to some medium, usually the
aircraft (or wing, airfoil, etc.)

m Airspeed is perhaps the most crucial

aerodynamic piece of information available
to the pilot



Airspeed
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Subsonic Incompressible Flow

m Let us consider the science of airspeed
measurement for subsonic incompressible

flow

m Airspeed is usually measured using a
device called the Pitot tube



Subsonic Incompressible Flow
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Subsonic Incompressible Flow

m Recall that total pressure is:

= — ol
P = Po 2,0

= Solving for V:

2(p — Do)
N P

| Va—




Subsonic Compressible Flow

m The compressible case is much more
complex. Bear with me!

s Thermodynamics shows:

cp =R+ ¢y
s From which one can find:
YR
Cp =



Subsonic Compressible Flow

m Consider a Pitot-tube. In the freestream we
have Ty, p; (static pressure), and V/;. At the
stagnation point, we have T, p,y (total
pressure), butV, =0

m Recall the energy equation:

VE
Cp T1 + —

2 — CpTO



Subsonic Compressible Flow

s Rearranging:
To_ ., Vi
T, — 2c¢,T4

= Subbing c¢,, a appears naturally:

TO ]/_1
— =11 M7
T 2 1




Subsonic Compressible Flow

m Recall for isentropic flow:

V.
Po (T())Y—l
P1 Iy

m Substituting and solving for Mach yields:
: i

M12= 2 (@)y—l
Yy —1[\p1 |




Subsonic Compressible Flow

: y-1 -
Mi = ‘ <@>y—1
Yy —11\p1 |

m This is an interesting result: a
measurement of p, (total pressure) and
p1 (static pressure) is a direct
measurement of Mach number!




Subsonic Compressible Flow

m Solving for actual velocity:

y—1

T y—1 -
V12 — 201 (ﬁ) ' —1
y —11\ps |




True Airspeed

s Rearranging the expression:

2a;3 — s
y2 = 24 (Po p1=1) i

y—11 P1

m These two equations are used to find the
actual airspeed, the true airspeed



True Airspeed

s However, this requires finding a,, which
requires measuring Ty

m As it turns out, measuring T; is quite hard

m This + the fact that pressure gauges are set
up to measure pressure differences (py —
p,) instead of ratios (py/p1), makes it
convenient to define a calibrated airspeed



Calibrated Airspeed

s Rearranging the expression:

2a? — B2 -
chal _ S (Po P1 : 1) _1
Y — 1 L Ps |

m Where a; and p, are the easily
measured/known speed of sound and
pressure at sea-level



Why Mach > 0.3?

A discussion of compressibility



Why Mach > 0.3?

m [t should be engrained in your head that
any flow where M > 0.3 is fast enough to
consider compressibility effects

s Why is this the case?



Why Mach > 0.3?

m Consider a gas initially at rest that is
isentropically accelerated to Mach M

m The density ratio is given by the isentropic
equations derived before:




Why Mach > 0.3?

s Plotting the density ratio 22 . 2 versus Mach

number yields the following plot:



Why Mach > 0.3?
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Why Mach > 0.3?

m For M < 0.3, the density variation is less
than 5%

s We thus define 5% as a density variation
large enough to raise the need to account
for compressibility effects
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